
A Modification of the Landau-Vishkin
Algorithm Computing Longest Common

Extensions via Suffix Arrays

Rodrigo de Castro Miranda1? and Mauricio Ayala-Rincón1

Mestrado em Informática e Departamento de Matemática, Universidade de Braśılia,
Brasil

rodrigo.miranda@acm.org,ayala@mat.unb.br

Abstract. Approximate string matching is an essential problem in many
areas related to Computer Science including biological sequence process-
ing. The standard solution of this problem is an O(mn) running time and
space dynamic programming algorithm for two strings of length m and
n. Landau and Vishkin developed an algorithm which uses suffix trees
for accelerating the computation along the dynamic programming table
and reaching space and running time in O(nk), where n > m and k is the
maximum number of admissible differences. Suffix trees are used for pre-
processing the sequences allowing an O(1) running time computation of
the longest common extensions between substrings. One of the practical
drawbacks of the Landau-Vishkin algorithm is the excessive use of space
inherent to the use of suffix trees. In fact, although suffix trees can be
handled in linear space their construction and manipulation implies high
multiplying factors to this linear behavior. We present a variation of the
Landau-Vishkin algorithm which instead of suffix trees uses suffix arrays
for computing the longest common extensions, thereby improving actual
space usage.

Keywords. Approximate string matching, suffix trees, suffix arrays.

1 Introduction

Matching strings with errors is an important problem in Computer Science, with
applications that range from word processing to text databases and biological
sequence alignment. The standard algorithm for approximate string matching
is a dynamic programming algorithm with O(mn) running-time and space com-
plexity, for strings of size m and n.

Landau and Vishkin [12] developed an O(kn) algorithm for matching a
pattern to a string of length n with at most k differences. The algorithm iterates
through the diagonals of the dynamic programming table and uses a suffix tree
data structure for constant-time jumps along the diagonals, bypassing character-
by-character matching. This algorithm may be adapted to treat other problems
of biological interest such as sequence alignment. However of theoretical interest,
? Corresponding author

the Landau-Vishkin algorithm has the practical drawback that the use of suffix
trees implies a multiplier of over ten bytes per input character on average [11],
which makes it uninteresting for the treatment of long length sequences which
occur in molecular biology.

In this paper we present a variation of the Landau-Vishkin algorithm which
instead of suffix trees uses suffix arrays enhanced with a table of longest common
prefixes [1, 13] for computing the necessary jumps along the diagonals of the
dynamic programming table. Since in contrast with the space usage of suffix
trees suffix arrays use much less space [15, 10], by this proposed modification the
space usage of the Landau-Vishkin algorithm is decreased obtaining a method
which is closer to practical usage for long sequences which arise in molecular
processing.

Initially, section 2 defines the problem and presents the dynamic program-
ming solution. Afterward, section 3 presents the Landau-Vishkin algorithm, suf-
fix trees and their use in the algorithm and section 4 presents suffix arrays and
describes how they could be used instead of suffix trees in the Landau-Vishkin
algorithm. Finally, section 5 concludes and remarks on further work.

2 Problem definition

In this section we will define the problem being studied and present the standard
dynamic programming solution.

2.1 Preliminaries

Given the strings T = t1...tn and P = p1...pm of length |T | = n and |P | = m,
m ≤ n, over an alphabet Σ we present a few definitions.

– ε is the empty string.
– P is a substring of T if m ≤ n and p1...pm = ti...ti+m−1 for some i ≥ 1 and

i + m− 1 ≤ n. If m < n we say that P is a proper substring of T .
– P is a prefix of T if m ≤ n and pi = ti for 1 ≤ i ≤ m. If m < n then we say

that P is a proper prefix of T .
– P is a suffix of T if p1...pm = ti...ti+m−1 for i + m − 1 = n and i ≥ 1. If

i > 1 then we say that P is a proper suffix of T . We also say that Ti = ti...tn
where i ≥ 1 is the i-th suffix of T (that is, the suffix of T that starts at
position i).

– The longest common prefix of T and P is the longest string L = l1...lk such
that 0 ≤ k ≤ m and l1 . . . lk = p1 . . . pk = t1 . . . tk. If k = 0 (i.e. P and T do
not have a common prefix) then L = ε.

– The longest common extension of T and P at position (i, j) is the length of
the longest common prefix of Ti and Pj .

2.2 Approximate string matching

Definition 1 (Edit distance).
The edit distance between two strings P = p1...pm and T = t1...tn is the

minimum amount of operations needed to transform P into T or T into P ,
where the allowed operations are defined as follows.

– Substitution when a character pi of P is replaced with a character tj of T .
– Insertion when a character pi of P is inserted at position j of T .
– deletion when a character pi is removed from P .

The sequence of operations needed to transform P into T is called the edit
transcript of P into T .

An alignment of P and T is a representation of the operations applied on P
and T , usually placing one string on top of the other, and filling with dash the
positions in P and T where a space was inserted so that every character or space
on either string is opposite a unique character or unique space on P or T [5].

Definition 2 (Approximate string matching with k differences).
We define the approximate string matching problem with k differences be-

tween a pattern P and a text T to be the problem of finding every pair of posi-
tions (i, j) in T where the edit distance between P and ti...tj is at most k. The
special case when k = 0 is the problem of finding all occurrences of P in T .

2.3 Dynamic programming solution

We can find the edit distance D(i, j) between p1...pi and t1...tj from the distances
D(i − 1, j − 1) between p1...pi−1 and t1...tj−1, D(i − 1, j) between p1...pi−1

and t1...tj and D(i, j − 1) between p1...pi and t1...tj−1 by solving the following
recurrence relation.

D(i, j) =


i + j if j = 0 or i = 0,

min[D(i− 1, j − 1) + d, D(i− 1, j) + 1, D(i, j − 1) + 1]
where d = 0 if pi = tj or 1 if pi 6= tj otherwise

This relation can be calculated by a straightforward O(nm) dynamic pro-
gramming algorithm using an n + 1 × m + 1 dynamic programming table. A
technique due to Hirschberg [6] [5] can be applied to it in order to decrease the
space usage to O(n) at the cost of doubling the computation time.

3 The Landau-Vishkin Algorithm

Landau and Vishkin presented an O(kn) algorithm for the approximate string
matching problem with k-differences in [12]. The algorithm iterates k times over
each diagonal of the dynamic programming table and find all matches of P that
end at each diagonal with at most k differences. The explanation given follows
the one given by Gusfield in [5].

3.1 Diagonals and d-paths

Given the text T = t1...tn and the pattern P = p1...pm, we present a few
definitions.

– A diagonal d of the dynamic programming matrix D consists of all Di,j such
that j − i = d.

– The main diagonal is the diagonal 0 of D composed by the cells Di,i where
0 ≤ i ≤ m ≤ n.

– A path in the dynamic programming table is a sequence of adjacent cells.
– If a cell (i, j) follows a cell (i−1, j−1) in a path, it is said to be a mismatch

if tj 6= pi, and a match otherwise.
– If a cell (i + 1, j) or a cell (i, j + 1) follows a cell (i, j) in a path, it is said to

be a space.
– A d-path in D is a path which starts either at column 0 before row d + 1 or

at row 0 and has the following properties:
• Paths initiating at row 0 start with zero errors and paths initiating at

cell (i, 0) for 1 ≤ i ≤ d start with i errors (insertion of i spaces before T
for the prefix p1...pi).

• From any cell (i, j), the next cell along the path (if any) can only be one
of (i + 1, j + 1), (i, j + 1), or (i + 1, j).

• It has a total of d mismatches and spaces.
– A d-path is farthest-reaching on diagonal i if it is a d-path that ends in

diagonal i and the index of it’s ending column c along diagonal i is greater
than or equal the index of the ending column of every other d-path which
ends on diagonal i.

3.2 d-path construction and extension

A d-path is constructed in D in the following way.
If d = 0 then a 0-path that starts on diagonal i is a path that begins at cell

D0,i and is extended along diagonal i to cell Dj,i+j , where j is the length of the
longest common prefix of ti+1...ti+j and p1...pj . d-paths starting from column 0
should be extended in this way too.

If d > 0 then a d-path is constructed from a (d − 1)-path whose ending cell
Dr,s is on diagonal i by firstly extending it to cell Dr′,s′ in diagonal i′ in one of
three ways:

– the path is extended one cell to the right to cell Dr′,s′ = Dr,s+1 on diagonal
i′ = i + 1, meaning a space is inserted in the pattern at position r;

– the path is extended one cell down to cell Dr′,s′ = Dr+1,s on diagonal i′ =
i− 1, meaning a space is inserted in the text at position s;

– the path is extended one cell along the diagonal i′ = i to cell Dr′,s′ =
Dr+1,s+1, meaning a mismatch between ts and pr.

Secondly, after extending a (d − 1)-path to cell (r′, s′) on diagonal i′, the
path is further extended l cells along the diagonal i′ where l is the length of the
longest common prefix of Ts′ and Pr′ . Notice that d-paths starting in column
zero need special treatment during the initialization steps.

3.3 The algorithm

The Landau-Vishkin algorithm, presented in table 1, iterates over every diagonal
i of the dynamic programming table, building d-paths that are farthest-reaching
on each diagonal, beginning with all 0-paths, and then from those all 1-paths and
so forth until every k-paths have been found. Those k′-paths (where 0 ≤ k′ ≤ k)
that reach row m of the dynamic programming table are matches of P in T with
at most k differences.

For each iteration we find the farthest reaching d-path on diagonal i in the
following way.

– If d = 0 then the 0-path that starts at diagonal i is the farthest-reaching
0-path on i.

– If d > 0, we can find the farthest reaching d-path from the farthest-reaching
(d− 1)-paths on diagonals i− 1, i and i + 1 as follows.
• We extend the farthest reaching (d−1)-path on diagonal i−1 one cell to

the right to diagonal i and then further extend the path along diagonal
i as described in section 3.2. In a similar way we extend the farthest
reaching (d− 1)-path on diagonal i + 1 one cell down, and on diagonal i
one cell along the diagonal i.

• The farthest reaching d-path on diagonal i is chosen from the three paths
above as being the one that has the greater index of its ending column.

In its pre-processing phase the Landau-Vishkin algorithm build a generalized
suffix tree T (see section 3.4) for P and T , which means that every suffix of T
and every suffix of P has a corresponding leaf in T . The tree is further pre-
processed to allow for O(1) lowest common ancestor queries (see section 3.5),
which enables us to find the longest common extension of any two suffixes of
P and T in constant time. The special treatment of d-paths starting at column
zero is omitted in the algorithm 1 for simplicity.

Since the body of the algorithm’s inner loop runs in constant time and the
pre-process function runs in linear time, then the whole algorithm runs in time
O(kn), which is better than O(mn) for the standard dynamic programming
algorithm for large enough values of m (length of the pattern).

3.4 Suffix trees

A suffix tree T for a string T = t1...tn over an alphabet Σ is a rooted tree that
has the following properties:

– there are exactly n leaves, numbered 1 to n;
– every internal node of the suffix tree, except for the root, has at least two

outgoing edges;
– every edge of T is labeled by a substring of T , so that any two labels of all

edges that start at a node v differ at least in their first characters;
– for every leaf i of T , the concatenation of the labels of the edges on the path

from the root to i gives us the suffix Ti of T .

Algorithm 1 Landau and Vishkin approximate string matching algorithm
1. Build a generalized suffix tree T for P and T.

2. Pre-process T so that we can answer LCA queries in constant time.

3. For every diagonal i of the dynamic programming table, find

its farthest reaching 0-path with an O(1) LCA lookup between P and

the (i + 1)-th suffix of T.

4. For d = 1 to k:
4.1 For every diagonal i of the dynamic programming table:

4.1.1 Extend the farthest reaching (d− 1)-path on diagonal i− 1
one cell to the right so that it reaches diagonal i
on cell (r, s).

4.1.2 Further extend it along i by a number of cells equal

to the depth of the LCA of the corresponding suffixes

of P and T (that is, P [r]...P [m] and T [s]..T [n]).
4.1.3 Extend the (d− 1)-paths on diagonals i + 1 and i in a

similar way, as described in the text.

4.1.4 Choose the farthest reaching among the three extended

paths.

5. Every path that reaches row m is a match of P in T with at most

k mismatches and spaces.

A sentinel character which does not belong to Σ (here we use $) is concate-
nated to T to guarantee that its suffix tree has exactly any leaves as described
above. A generalized suffix tree for the strings A and B is the suffix tree for the
string A#B, where # is a second sentinel character.

The suffix tree for a string of length n can be constructed in time O(n) using
O(n) space as shown by McCreight [14] and Ukkonnen [17]. Ukkonen’s algorithm
has the additional property that it is on-line. In fact, it builds the suffix tree
incrementally from the prefixes of T , starting with the smallest non-empty prefix
and proceeding until the tree for the complete string is built. Given the suffix
tree T for the string T = t1...tn, querying if a pattern P = p1...pm matches a
substring of T takes at most O(m) comparisons, independent of the length n of
T .

Kurtz [11] remarks that although a suffix tree can be built using linear space
complexity, most implementations actually have a large constant multiplying
factor. For large enough strings, such space usage can be a limiting factor in the
choice of this data structure.

3.5 Lowest Common Ancestor

The Landau-Vishkin algorithm uses a lowest common ancestor computation for
finding the longest common prefix of suffixes of the pattern and the text.

Definition 3 (Ancestor node). Given two nodes v and w of a tree T , we say
that a node v is an ancestor of a node w if v is on the unique path from the root
to w. A node v is an ancestor of itself. We say that v is a proper ancestor of w
if v is not w.

Definition 4 (Lowest common ancestor).
In a rooted tree T , the lowest common ancestor (LCA) of two nodes x and y

is the deepest node in T that is an ancestor of both x and y.

In a suffix tree T for the string T , given any two leaves i and j of T , corre-
sponding to the suffixes Ti and Tj of T , the LCA of i and j gives us the longest
common prefix of Ti and Tj .

Gusfield [5] describes in detail a constant-time LCA query over a suffix tree
after linear time pre-processing. It is based on a much simpler LCA algorithm
for complete binary trees. The pre-processing of T creates an implicit mapping
to a complete binary tree B and allows queries for lowest common ancestors of
any two nodes of T to be answered in O(1). The pre-processing also uses O(n)
extra space.

4 Modification of the Landau-Vishkin algorithm

Our proposal is to substitute the use of suffix trees on Landau and Viskin’s
algorithm with the use of suffix arrays for computing the longest common pre-
fixes. The advantage of this modification is that it will enable us to use a more
compact data structures than suffix trees.

4.1 Suffix Arrays

Definition 5 (Suffix array). A suffix array Pos for a string T is an array
which gives us a lexicographically ordered sequence of suffixes of T .

For the construction of the suffix array Pos, the alphabet Σ must be ordered.
The sentinel character $ is commonly used to assure the proper sorting order and
it has the special property that it is either greater or smaller than any symbol
of Σ.

Since it is an array of indexes of positions in T , a suffix array uses space
O(n), as the suffix tree, but the multiplying factor of n for the actual size is
much smaller than on suffix trees (4n if indexes of 32-bits are used, 8n if 64-bits
are used). A suffix array for T can be built in O(n) time from the suffix tree
of T , but construction uses up too much space. An algorithm which constructs
suffix arrays without an intervening suffix tree is called a direct construction
algorithm.

An O(n) space and O(n) expected running time and O(n log2 n) worst-case
running time direct suffix array construction algorithm is presented in [13].
Recently O(n) worst-case direct construction algorithms have been published in
[10] and [7], and [9].

An enhanced suffix array is a suffix array augmented with a table of longest
common prefixes, also called an LCP table [1] [13] [7]. Given the suffix array Pos
for the string T = t1...tn, the LCP table is the array lcp of n elements where
lcp[i] is the length of the longest common prefix of Pos[i] and Pos[i + 1]. The

lcp array can be constructed in linear time from the suffix array [8], or at the
same time the suffix array is built.

Many operations that we can do with suffix trees can be done with suffix
arrays with the multiplication factor of O(log2 n). The LCP table can lower such
factor to an addition of O(log2 n) instead of a multiplication. Properly designed
algorithms for suffix trees can be modified to run with the same bounds as a
suffix tree on an enhanced suffix array [1].

4.2 Longest common extension computation on a suffix array

What enables the Landau-Vishkin algorithm to achieve its O(kn) space and run-
ning time bounds is the constant time longest common extension computation,
which is done using a O(1) LCA computation over a generalized suffix tree.

Given an enhanced suffix array Pos for the string P#T$, we can pre-process
its corresponding lcp array and answer longest common extension queries in
constant time. The key to such an operation is the following theorem.

Theorem 1. The longest common extension between two suffixes Sa and Sb of
S can be obtained from the lcp array in the following way. Let i be the rank of Sa

among the suffixes of S (that is, Pos[i] = a). Let j be the rank of Sb among the
suffixes of S. Without loss of generality, we assume that i < j. Then the longest
common extension of Sa and Sb is lcp(i, j) = mini≤k<j lcp[k].

Proof. Let Sa = sa...sa+c...sn and Sb = sb...sb+c...sn, and let c be the longest
common extension of Sa and Sb (i.e. sa...sa+c−1 = sn...sb+c−1). We assume that
the string S has a sentinel character so that no suffix of S is a prefix of any other
suffix of S but itself.

If i = j − 1 then k = i and lcp[i] = c is the longest common extension of Sa

and Sb and we are done.
If i < j − 1 then select k such lcp[k] is the minimum value in the interval

[i, j] of the lcp array. We then have two possible cases:

– If c < lcp[k] we have a contradiction because sa . . . sa+lcp[k]−1 = sb . . . sb+lcp[k]−1

by the definition of the LCP table, and the fact that the entries of lcp cor-
respond to sorted suffixes of S.

– if c > lcp[k], let j = Pos[k], so that Sj is the suffix associated with position
k. Sk is such that sj . . . sj+lcp[k]−1 = sa . . . sa+lcp[k]−1 and sj . . . sj+lcp[k]−1 =
sb . . . sb+lcp[k]−1, but since sa . . . sa+c−1 = sb . . . sb+c−1 we have that the lcp
array should be wrongly sorted which is a contradiction.

Therefore we have c = lcp[k]

Thus we have reduced our longest common extension query to a range-
minimum-query over a range in lcp. As it turns out, it is possible to pre-process
an array of integers (such as lcp) in linear time so that a query for the minimum
value in a given interval of the array is answered in constant-time. Kärkkäinen

and Sanders give such an algorithm in [7], as does Farach-Colton and Bender
in [3] and Kim et ali. in [9].

The idea presented below follows the algorithm based on Cartesian trees
given in [4] by Gabow, Bentley and Tarjan.

We will then build in O(n) a Cartesian tree for the lcp array, which will
enable us to query the minimum value of any range in lcp in constant time by
doing a constant-time lowest common ancestor query.

Definition 6 (Cartesian Trees). A Cartesian tree for an sequence of real
numbers x1 . . . xn is a binary tree with nodes labeled by those numbers, such
that the root is labeled by m where xm = minxi | 1 ≤ i ≤ n, the left subtree is
the Cartesian tree for x1...xm−1 and its right subtree is the Cartesian tree for
xm+1 . . . xn.

Proposition 1. The smallest number of the interval xi . . . xj can then be found
by simply finding the lowest common ancestors of nodes i and j on the Cartesian
tree.

Proof. Given the nodes i and j, and v the lowest common ancestor of i and
j, and suppose that i < j. The structure of the Cartesian tree as given above
is such that if a node v is the lowest common ancestor of nodes i and j, then
it means that i ≤ v ≤ j, because from the construction of the Cartesian tree,
every other ancestor of v is either to the right of i and j, or to the left of them.
Furthermore, from the construction of the tree, the node v is the node such that
xv is the smallest value from its subtree, and thus finding v = LCA(i, j) we also
find the smallest value xv in the range xi . . . xj .

As we have described in section 3.5, given a tree with n nodes we can pre-
process it in O(n) time and O(n) space so that we can answer LCA queries over
it in O(1).

We must also show how to compute the Cartesian tree in O(n). It is done
using the algorithm given in [4] and [3].

We build the Cartesian tree Ci for the array a1, . . . , ai from the Cartesian
tree Ci−1 for the array a1, . . . , ai−1 by following the rightmost path of the tree
from its leaf to the root, until we find node k such that ai < ak. We then set
right subtree of node k to be the left subtree of node i, and set node i to be
the right subtree of node k. Since each node can added to the rightmost path at
most once, and leave it at most once, the algorithm runs in time O(n).

Thus, in order to answer longest common extension queries in O(1) with
O(n) pre-processing, we first built a suffix array in O(n) time and space for the
text concatenated with the pattern (with sentinel characters), and build the LCP
table for the suffix array (either together with the construction of the suffix array
itself, or in time and space O(n) as given in [8]). We then create a Cartesian tree
C for the LCP table, and pre-process it in O(n) so that we can query the LCA of
any two nodes of C in O(1). Given the suffixes i and j of the concatenated string,
their longest common extension will be the result of the range-minimum-query
over lcpi . . . lcpj , which is given by a O(1) LCA query over the Cartesian tree C.

4.3 Proposed algorithm

The proposed algorithm is then the same Landau-Vishkin algorithm, substitut-
ing the suffix tree for a suffix array, and the LCA query over the suffix tree for
a range-minimum query over the LCP table for the suffix array, which we give
as Algorithm 2.

Algorithm 2 Modified Landau-Vishkin approximate string matching algorithm
1. Build a suffix array Pos for the string P#T, together with the

lcp table

2. Build a Cartesian tree C for the lcp table

3. Process the Cartesian tree C so that we can do O(1) LCA queries

on it.

4. For every diagonal i of the dynamic programming table, find

its farthest reaching 0-path with an O(1) LCA lookup on the

Cartesian Tree for the nodes corresponding to P and the i-th
suffix of T.

5. For d = 1 to k:

5.1 For every diagonal i of the dynamic programming table:

5.1.1 Extend the farthest reaching (d− 1)-path on diagonal

i− 1 one cell to the right so that it reaches diagonal

i on cell (r, s).
5.1.2 Further extend it along i by a number of cells equal

to the RMQ of the lcp array in the range corresponding

to the relevant suffixes of P andT (that is, P [r]...P [m]
and T [s]..T [n]). The RMQ is given by a LCA query on the

Cartesian tree.

5.1.3 Extend the (d− 1)-paths on diagonals i + 1 and i in a

similar way, as described in the text.

5.1.4 Choose the farthest reaching among the three extended

paths.

6. Every path that reached row m is a match of P in T with at most

k mismatches and spaces.

Although it also uses a LCA query over a tree, it is a smaller tree, with
exactly n nodes, and which can be implemented using less space than a suffix
tree.

Theorem 2 (Running time and space complexity). The modified Landau-
Vishkin approximate string matching algorithm runs in time and space O(nk).

Proof. As commented before, construction and maintenance of suffix arrays run
in O(n) time and space ([11]) as it do building and maintenance of Cartesian
trees. Since with this pre-processing LCA queries are done in O(1), the con-
struction of the approximate matches is computed in O(kn) running time and
space.

However the theoretical bounds coincide with the original ones of the Landau-
Vishkin algorithm, this variation is better because in practice we are now able
to use less space during pre-processing than with suffix trees. Suffix arrays are
a more compact data structure, and the LCA pre-processing for the Cartesian
tree also uses less space than the same pre-processing over suffix trees, as it has
exactly n nodes, while with suffix trees it ranges from n + 1 to 2n− 1 nodes.

Supposing we are dealing with a good implementation of suffix trees where
we use about 12 bytes per character (see comments on E. Coli treatment in
[11]), constructed with 3

2n nodes. The space used for the LCA pre-processing is
then 12n + C 3

2n bytes, where C is the space used by the LCA pre-processing
for each node of the suffix tree. The suffix array and the lcp array can be built
with atotal of 8n bytes. If one builds the labeled cartesian tree using 12n bytes
(a reasonable assumption) such that the labels of the cartesian tree’s nodes are
actual values of lcp, instead of indexes, we can discard the suffix array and the lcp
array altogether. Since the cartesian tree has exactly n nodes, the final amount
of space used for the preprocessing is then 12n+Cn bytes, which is an economy
of C n

2 bytes over the suffix tree-based version, and a clever implementation of
the cartesian tree or a better labelling scheme would use even less space.

5 Concluding remarks

Baeza-Yates and Gonnet [2] and Navarro [16] commented that although theoret-
ically very interesting, in practice the Landau-Vishkin algorithm is much slower
than expected. In addition, the use of suffix trees implies a large space usage,
specially when combined with the necessary pre-processing for answering LCA
queries in constant-time.

We have shown that it is possible to change the Landau-Vishkin approximate
string matching algorithm to use enhanced suffix arrays instead of suffix trees
for its computation of longest common extensions between suffixes of the text
and the pattern, while keeping the same running time and space complexity.
Actual space usage is likely to be better than the standard algorithm because
most implementations of suffix trees have a much larger space usage.

References

1. M. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based
on suffix arrays. In 9th International Symposium on String Processing and Infor-
mation Retrieval, pages 31–43, 2002.

2. R. A. Baeza-Yates and G. H. Gonnet. Fast string matching with mismatches.
Information and Computation, 108(2):187–199, 1994.

3. M. Bender and M. Farach-Colton. The lca problem revisited. In LATIN 2000,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer Verlag,
2000.

4. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. In 6th Annual ACM Symposium on Theory of Computing
(STOC), page 135143, 1984.

5. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

6. D. Hirschberg. A linear space algorithm for computing the maximal common
subsequences. Communications of the ACM, 18:341–343, 1975.

7. J. Kärkkäinen and P. Sanders. Simpler linear work suffix array construction. In
International Colloquium on Automata, Languages and Programming, pages 943–
955, 2003.

8. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In 12th Annual
Symposium on Combinatorial Pattern Matching, volume 2089 of Lecture Notes in
Computer Science, pages 181–192. Springer Verlag, 2001.

9. D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix
arrays. In 14th Annual Symposium on Combinatorial Pattern Matching, volume
2676 of Lecture Notes in Computer Science, pages 186–199. Springer Verlag, 2003.

10. P. Ko and S. Aluru. Space-efficient linear-time construction of suffix arrays. Journal
of Discrete Algorithms, to appear.

11. S. Kurtz. Space-efficient linear-time construction of suffix arrays. Software —
Practice and Experience, 29(13):1149–1171, 1999.

12. G. Landau and U. Vishkin. Introducing efficient parallelism into approximate
string matching and new serial algorithm. In 18th ACM STOC, pages 220–230,
1986.

13. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
Technical Report TR 89-14, University of Arizona, 1989.

14. E. M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. Jour-
nal of the Association for Computing Machinery, 23(2):262–272, April 1976.

15. J.I. Munro, Raman V., and Rao S. S. Space efficient suffix trees. Journal of
Discrete Algorithms, 2001.

16. G. Navarro. A guided tour of approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

17. E. Ukkonen. On-line Construction of Suffix-Trees. Algorithmica, 14:249–260, 1995.

